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Abstract: - Improving the variational formulation for an ideal compressible fluid, a new expression of
velocity field is presented by using vector potentials of frozen field, i.e. the potentials convected by the
fluid flow under effect of stretching. This has been deduced from the action principle. It is verified that
the system of new expressions in fact satisfies the Euler’s equation of motion. The Lagrangian consists
of main terms of total kinetic energy and internal energy, together with two terms yielding the equations
of continuity and entropy and the third term which provides rotational component of velocity field. The
last term leads to an explicit expression of non-vanishing helicity.
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1 Introduction

A symmetry of a physical system means in-
variance with respect to a certain group of trans-
formations and plays an essential role in the gauge
theory of theoretical physics. Fluid mechanics is
a field theory of Newtonian mechanics of Galilean
symmetry. Two symmetries are known as sub-
groups of the Galilean group: translation (space
and time) and space-rotation.

Guided by the gauge theory, Kambe [1, 2] stud-
ied flow fields of an ideal compressible fluid and
investigated consequence of both global and local
invariances of the fields in the space-time (x, t),
where x = (x1, x2, x3) is the three-dimensional
space coordinates. Among the results obtained in
the previous studies, it is particularly remarkable
that the convective derivative Dt defined by

Dt ≡ ∂/∂t+ v · ∇ , ∇ = (∂/∂xi), (1)

(the Lagrange derivative in the fluid mechanics)
is in fact a covariant derivative which is a build-
ing block in the gauge theory, where v(x, t) is the
velocity field. On the basis of the gauge-theoretic
point of view, appropriate Lagrangian function-
als are defined for motion of an ideal fluid. Total
Lagrangian consists of space integrals of kinetic

energy and internal energy ϵ (with negative sign).
Traditionally, this is supplemented by additional
two terms associated with conservations of mass
and entropy. Thus the total Lagrangian L∗ is de-
fined by

L∗ =

∫
V
Λ∗(v, ρ, s, ϕ, ψ) d

3x , (2)

Λ∗ = 1
2 ρ⟨v,v⟩ − ρϵ(ρ, s)− ρDtϕ− ρsDtψ, (3)

where V is a volume in the x-space (chosen arbi-
trarily), Λ∗ is the Lagrangian density, ρ(x, t) and
s(x, t) are the fluid density and specific entropy
(per unit mass), and ϕ(x, t) and ψ(x, t) are po-
tentials associated with mass and entropy respec-
tively.1 An additional term will be added to L∗ in
a later section (§3).

An action integral is defined by

J =

∫ t2

t1

L∗dt =

∫
Λ∗(v, ρ, s, ϕ, ψ)d

4x, (4)

d4x = dt d3x,

where It is a time interval [t1, t2] (chosen arbitrar-

1Scalar product between two tangent vectors a = (ai)
and b = (bi) is denoted in this paper by four ways, ⟨a, b ⟩,
a · b, δija

ibj , or aib
i, where ai(= δija

j) is a cotangent
vector (derived from the tangent vector ai).
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ily). The action principle is

δ J =

∫
V⊗It

δΛ∗(v, ρ, s, ϕ, ψ) d
4x = 0, (5)

for its variation δJ with respect to arbitrary vari-
ations of the variables v, ρ, s, ϕ and ψ.

Total energy and momentum are global inte-
grals of 1

2 ρ ⟨v,v⟩ and ρv respectively, that char-
acterize the flow field globally. There is another
important global integral (integral over the whole
space), which is the helicity H defined by

H ≡
∫

⟨v,ω ⟩d3x , (6)

where ω = ∇× v is the vorticity.
The section 2 is a review of the action principle

applied to the above Lagrangian under the Eule-
rian variation in which variations are taken for all
the field variables independently. This yields a
general solution equivalent to the classical Cleb-
sch solution (Clebsch [3], [1]). In this solution
the vorticity has a special form such that the he-
licity vanishes. In a particular case of isentropic
fluid in which the entropy s is a constant, the flow
field thus obtained becomes irrotational. It is well-
known that, even in such an isentropic fluid, the
fluid flow can support rotational velocity fields.
In fact, Euler [4] showed already in 1755 that his
equation of motion can describe rotational flows.
In addition, most traditional formulations of the
action principle take into account both the con-
tinuity equation and isentropic condition as con-
straint conditions for variations. To do it, La-
grange multipliers are used. This is a mathemat-
ical artifact, while physical meaning of the multi-
pliers is not clear.

In order to resolve the issue just mentioned
above, a new term LA of the form,

LA = −
∫

(L∗
t [A])iΩ

i d3x, (7)

is added to the total Lagrangian for flows of an
inviscid fluid, where the vector Ω = (Ωi) sat-
isfies the frozen field equation and L∗

t [A] is the
Lie derivative of a cotangent vector A (details
are given in §3 and Appendix B). This new term
was introduced by [1, 2] to account for the rota-
tion symmetry of the flow field, expecting that
this yields non-vanishing rotational component in

the velocity field and non-vanishing helicity. It is
confirmed here that the expectation is valid..

In the present formulation, the term LA is
added to the total Lagrangian, as well as those as-
sociated with the last two terms of (3). Forms of
the three terms are determined so that the Euler-
Lagrange equation is not influenced by addition
of the new terms (see Appendix A and B). In the
next section 2, in addition to showing the Clebsch-
type solution resulting in irrotational flow for the
particular case of isentropy, the last two terms of
(3) yield the conservation equations of mass and
entropy.

The present paper investigates outcome of the
new term LA when it is added to the total La-
grangian L∗. It is verified newly and explicitly
that the fields obtained by Eulerian field varia-
tion in fact satisfy the Euler’s equation of motion.
Details of the background of the present investi-
gation are left in Appendices A ∼ C, so that the
main part is described smoothly.

Simple examples are presented to show how
rotational flow fields are expressed by a new rep-
resentation. In addition, advantage of the present
formulation is emphasized by showing that the
vector potentials A and Ω generate the helicity
and that the potential fields take account of the ef-
fect of frozen vector fields explicitly. The Clebsch-
type solution obtained from L∗ lacks the last ef-
fect, as shown in §5.

2 Review of previous Eulerian
variations

In general field theory, variations are taken for
all the field variables independently. This is called
Eulerian variation of flow field (Serrin [5]). In re-
gard to the Lagrangian density (3), we take varia-
tions of the variables v, ρ, s and potentials ϕ and
ψ, by assuming all the variations being indepen-
dent. In this section, we disregard the Lagrangian
LA in order to consider what is the result of ne-
glecting it.

2.1 Solution by the variation

Substituting the varied variables v+δv, ρ+δρ
s + δs, ϕ + δϕ and ψ + δψ into Λ∗(v, ρ, s, ϕ, ψ)
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and writing its variation as δΛ, we obtain

δΛ∗ = δv · ρ (v − ∇ϕ− s∇ψ )− δs ρ Dtψ

+ δρ (12 v
2 − h−Dtϕ− sDtψ)

+ δϕ
(
∂tρ+∇ · (ρv)

)
− ∂t(ρ δϕ)−∇ · (ρv δϕ)

+ δψ
(
∂t(ρs) +∇ · (ρsv)

)
− ∂t(ρsδψ)

−∇ · (ρsvδψ), (8)

where h = ϵ + p/ρ is the specific enthalpy, and
standard relations of thermodynamics are used.2

As usual, the variation fields are assumed to van-
ish on the boundary surface S enclosing the do-
main V ⊗ It when integration by parts is carried
out in (5). By substituting (8), the action prin-
ciple (5) for independent variations δv, δρ and δs
gives

δv : v = ∇ϕ+ s∇ψ , (9)

δρ : 1
2 v

2 − h−Dtϕ− sDtψ = 0 , (10)

δs : Dtψ ≡ ∂tψ + v · ∇ψ = 0 . (11)

Using (1), (9) and (11), we have

Dtϕ = ∂tϕ+ v · ∇ϕ = ∂tϕ+ v · (v − s∇ψ)
= v2 + ∂tϕ+ s ∂tψ.

Equation (10) can be rewritten, by using this and
(11), as

1
2 v

2 + h+ ∂tϕ+ s ∂tψ = 0 . (12)

From the variations of δϕ and δψ, we obtain

δϕ : ∂tρ+∇ · (ρv) = 0 , (13)

δψ : ∂t(ρs) +∇ · (ρsv) = 0 .

Using (13), the second reduces to the adiabatic
equation:

∂ts+ v · ∇s = Dts = 0 . (14)

Thus, we obtain the continuity equation (13) and
entropy equation (14) from the action principle.
With the velocity (9), the vorticity ω is given by

ω = ∇× v = ∇s×∇ψ. (15)

The scalar product ω · v is given by

ω · v = (∇s×∇ψ) · (∇ϕ+ s∇ψ)
= ω · ∇ϕ = ∇ · [ϕω ] .

2(∂ϵ/∂ρ)s = p/ρ2, and (∂/∂ρ)s(ρ ϵ) = ϵ + ρ (∂ϵ/∂ρ)s =
ϵ+ p/ρ = h.

The helicity H is defined by the integral (6). As-
suming that ω = 0 out of V , H vanishes in this
case:

H ≡
∫
V
ω · vd3x =

∫
V
∇ · [ϕω]d3x = 0. (16)

However, for general velocity fields, the helicity H
is a measure of linkage and knottedness of vortex
lines, and does not vanish in general.

2.2 Clebsch solution

Above results are summarized as follows:

v = ∇ϕ+ s∇ψ, (17)

1
2 v

2 + h+ ∂tϕ+ s ∂tψ = 0, (18)

Dts = 0, Dtψ = 0. (19)

The velocity field (17) is equivalent to the classical
Clebsch solution [3]. In fact, using (17) and (15),
and using a vector identity of the footnote3, we
have

ω × v = (v · ∇s)∇ψ − (v · ∇ψ)∇s,
∂tv = ∇∂tϕ+ ∂ts∇ψ + s∇∂tψ.

Adding the last two equations, we obtain

∂tv + ω × v = ∇(∂tϕ+ s ∂tψ)

+(Dts)∇ψ − (Dtψ)∇s,

Last two terms vanish due to (19). Thus, by the
help of (18), it is found that the following Euler’s
equation is satisfied:

∂tv + ω × v = −∇
(
1
2 v

2 + h
)
. (20)

2.3 Isentropic fluid

For an isentropic fluid where s takes a constant
value s0 at all points (but the density ρ is not nec-
essarily a constant), the equation of motion (20)
can be written as

∂tv + (v · ∇)v = −1

ρ
∇p, (21)

or Dtv = −∇h. (22)

3(∇s×∇ψ)× v = −(v · ∇ψ)∇s+ (v · ∇s)∇ψ.
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where the two relations (a) and (b) of the foot-
note4 are used.

Moreover, the motion is irrotational. In fact,
from (9), we have v = ∇Φ where Φ = ϕ + s0 ψ,
and we obtain ω = 0 from (15). Thus, the motion
reduces to potential flows for an isentropic fluid.

Traditionally, this property is considered to
be a defect of the formulation of the Eulerian
variation carried out just above, because the ac-
tion principle should yield equations of rotational
flows (e.g. [4]). This is a long-standing problem
([5]∼[8]). In particular, Lin [6] tried to resolve
this difficulty by introducing a constraint as a side
condition, which imposes invariance of Lagrangian
particle labels (a1, a2, a3) along particle trajecto-
ries. The additional Lagrangian introduced by
him was expressed by the following form:

LL =

∫
Bk ·Dtak d3x , (23)

This introduces three potentials (B1, B2, B3) as
a set of Lagrange multipliers of conditional varia-
tion, but physical significance of Bk is not clear.
In order to resolve this issue, Kambe [1] proposed
a new term LA instead of the above LL. This is
the subject to be considered in the next section.

In the expression Dtak of (23), the Lagrangian
particle labels are regarded as functions of the
Eulerian space coordinates x = (x1, x2, x3), i.e.
a = (a1, a2, a3) = a(x, t). On the other hand,
the position of a fluid particle of the name tag
a = (a1, a2, a3) at a time t may be denoted by
Xk(t,a). Usually, the parameters ak (k = 1, 2, 3)
are defined by ak = Xk(0,a). Then, the conser-
vation of mass in a volume element d3X(t) at a
time t imposes the following:

ρ(t,X) d3X(t) = ρ(0,X) d3a, (24)

where ρ(t,x) is the fluid density. Using the Jaco-
bian J of the transformation, we have d3X(t) =
J d3a, where J = ∂(X)/∂(a). Thus the following
relation must be satisfied at all points at any time:

J =
∂(X1, X2, X3)

∂(a1, a2, a3)
=
ρ(0,X)

ρ(t,X)
. (25)

4(a) (∇ × v) × v + ∇( 12 v
2) = (v · ∇)v; and (b) dh =

(1/ρ)dp by the thermodynamics, since we have ϵ = ϵ(ρ),
and dϵ = (p/ρ2) dρ.

3 Improvement of the Eulerian
variation

In order to derive rotational component of ve-
locity field by the Eulerian variation, an addi-
tional Lagrangian LA was proposed with using the
invariance property of the vorticity ωa by [1, 2],
where ωa is the vorticity transformed to the space
of Lagrangian coordinates a. The Lagrangian LA
is represented in the Eulerian x-space as follows:

LA = −
∫
V
⟨L∗

t [A], Ω⟩d3x (26)

= −
∫
V
(L∗

t [A])iΩ
i d3x

=

∫
V
Ai (Lt[Ω d3x])i + IntS , (27)

divA = 0, divΩ = 0, (28)

(see Appendix B for its derivation), where IntS de-
notes surface integrals over the surface S bound-
ing the integration volume V . Lie-derivative takes
different forms depending on the objects of oper-
ation [2, 9]:

Lt[ϕ] ≡ ∂tϕ+ vk∂kϕ = Dt ϕ, (29)

(Lt[Ω])i ≡ ∂tΩ
i + vk∂kΩ

i − Ωk∂kv
i, (30)

(L∗
t [A])i ≡ ∂tAi + vk∂kAi +Ak∂iv

k, (31)

Lt[d3x] ≡ (∂kv
k) d3x, (32)

where ϕ is a scalar field (a zero-form), Ω = (Ωi)
is a tangent vector, A = (Ai) a cotangent vector
(a one-form), and d3x a volume three-form. By
using these definitions, we have the following:

Lt
[
⟨A, Ω⟩d3x

]
= ⟨L∗

t [A],Ω⟩d3x

+⟨A, Lt[Ω]⟩d3x+ ⟨A, Ω⟩ Lt[d3x]

=
[
∂t⟨A, Ω⟩+ ∂k(v

k⟨A, Ω⟩)
]
d3x.

This is required to vanish by the equations (41)
and (42) obtained from the variational principle
of the next subsection §3.1. Therefore, the scalar
product ⟨A, Ω ⟩ is a density satisfying a conserva-
tion equation.

Invariance of mass during the motion requires
Lt[ρ d3x] = ρLt[d3x] + Lt[ρ] d3x = 0. Using (29)
and (32), we obtain

Lt[ρ] = Dtρ = −ρ (∂kvk),
∴ ∂tρ+ ∂k(ρv

k) = 0. (33)

4

WSEAS TRANSACTIONS on FLUID MECHANICS Tsutomu Kambe

E-ISSN: 2224-347X 62 Issue 2, Volume 7, April 2012

user
Rectangle



By including LA of (27), the Lagrangian density
of (3) is modified to

Λ[vi, ρ, s, ϕ, ψ,A] = 1
2 ρ vkv

k − ρ ϵ(ρ, s)

−ρ (∂t + vk∂k)ϕ− ρs (∂t + vk∂k)ψ

−
(
∂tAi + vk∂kAi +Ak∂iv

k
)
Ωi, (34)

where Dt is replaced by ∂t + vk∂k. Note that
vk(tangent vector) = vk(cotangent vector) in the
cartesian flat space (see the footnote below Eq.(3)).
The same is said to Ω, i.e. Ωk = Ωk.

3.1 New variational solution

Now, we take variations of the field variables
vi, ρ, s and potentials ϕ, ψ and A. Substituting
the varied variables vi+δvi, ρ+δρ, s+δs, ϕ+δϕ,
ψ + δψ and A + δA into Λ[vi, ρ, s, ϕ, ψ,A] and
writing its variation as δΛ, we obtain

δΛ = δvi

[
ρ (vi − ∂iϕ− s ∂iψ)− Ωk ∂iAk

+Ωk ∂kAi

]
− ∂k

(
ΩkAi δvi

)
(35)

+ δρ ( 12 u
2 − h−Dtϕ− sDtψ )− δs ρ Dtψ

+ δϕ
(
∂tρ+∇ · (ρv)

)
− ∂t(ρ δϕ)−∇ · (ρv δϕ)

+ δψ
(
∂t(ρs) +∇ · (ρsv)

)
− ∂t(ρs δψ)

−∇ · (ρsv δψ).

−⟨L∗
t [A], δΩ ⟩+

⟨
δA,

(
Lt[Ω] +Ω ∂kv

k
)⟩

Thus, the variational principle δJ =
∫
δΛ d4x =

0 for independent variations of δvi, δρ, δs, etc.
results in the followings:

δvi : ρ (vi − ∂iϕ− s ∂iψ)− Ωk ∂iAk

+ Ωk ∂kAi = 0 , (36)

δρ : 1
2 v

2 − h−Dtϕ− sDtψ = 0 , (37)

δs : Dtψ ≡ ∂tψ + v · ∇ψ = 0 , (38)

δϕ : ∂tρ+∇ · (ρv) = 0 , (39)

δψ : ∂t(ρs) +∇ · (ρsv) = 0 , (40)

δΩ : L∗
t [A] = 0 . (41)

δA : Lt[Ω] +Ω ∂kv
k

= ∂tΩ+∇× (Ω× v) = 0 , (42)

∂kΩ
k = 0. (43)

Using the continuity equation (39), we obtain the
same adiabatic equation as (14),

Dts = ∂ts+ v · ∇s = 0 . (44)

from (40). The equation (36) gives a new expres-
sion for the velocity v:

v = ∇ϕ+ s∇ψ +
1

ρ
w , (45)

where w = (wi) = Ωk∇Ak − (Ω · ∇)A

= Ω× (∇×A), (46)

wi = Ωk Cik, Cik = ∂iAk − ∂kAi, (47)

where we have the equality,

Ωk Cik = [Ω× (∇×A)]i,

since the right hand side is rewritten as

εijk Ωj(∇×A)k = εijkεklmΩj ∂lAm

= (δilδjm − δimδjl)Ωj∂lAm = Ωj∂iAj − Ωj∂jAi.

The vorticity ω = ∇× v is given by

ω = ∇s×∇ψ +
1

ρ
∇×w − 1

ρ2
∇ρ×w. (48)

The second and third terms express non-vanishing
vorticity even in an isentropic fluid of uniform s.
Defining B = ∇×A, we hvae

∇×w = (B · ∇)Ω− (Ω · ∇)B (49)

= ∇Ωk ×∇Ak −∇Ωk × ∂kA− (Ω · ∇)B. (50)

Thus, the present formulation yields the rotational
component naturally by the variational principle.

3.2 Euler’s equation of motion is
satisfied

Next step is to verify that the set of equations
derived in the previous subsection in fact satisfy
the Euler’s equation of motion. This is carried
out as follows for the flow field described by (36),
(37) and (38). Applying the covariant derivative
Dt = ∂t + v · ∇ to v of (45), we have

Dt[v] = Dt∇ϕ+Dt(s∇ψ) +
1

ρ
Dtw− 1

ρ2
(Dtρ)w,

(51)
where, from (33),

Dtρ = −ρ (∂kvk). (52)

The first term can be rewritten as

Dt(∇ϕ) = ∇(Dtϕ)− ∂kϕ∇vk. (53)
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Using the isentropic property (44), the second term
is

Dt(s∇ψ) = sDt(∇ψ) = s∇(Dtψ)− s ∂kψ∇vk

= −s ∂kψ∇vk, (54)

where (38) is used. By using the expression (47),
the third term is

Dtw
i = Dt(Ω

k Cik)

= Dt(Ω
k)Cik +Ωk Dt(Cik). (55)

By (42) and (30), we have

Dt(Ω
k) = Ωl ∂lv

k − Ωk ∂lv
l ,

while for Dt(Cik), by using (47), we have

DtCik = Dt(∂iAk)−Dt(∂kAi)

= ∂i(DtAk)− ∂k(DtAi)

−(∂iv
l) ∂lAk + (∂kv

l) ∂lAi .

Substituting these two into (55),

Dtwi = Ωl ∂lv
k (∂iAk − ∂kAi)

−Ωk ∂lv
l (∂iAk − ∂kAi) + Ωk

(
∂i(DtAk)

−∂k(DtAi)− (∂iv
l) ∂lAk + (∂kv

l) ∂lAi

)
.

The right hand side simplifies greatly by cancella-
tion, and we finally obtain

Dtw = −wk∇vk − (∂lv
l)wi , (56)

wk = Ωl Ckl .

Substituting (52), (53), (54) and (56) into (51),
we obtain

Dtv = ∇(Dtϕ)− (∂kϕ+ s ∂kψ +
1

ρ
wk)∇vk

= ∇(Dtϕ)− vk∇vk = ∇(Dtϕ− 1
2 v

2)

Using (37) and (38), this reduces to the Euler’s
equation of motion (22):

Dtv = −∇h . (57)

Thus, it is found that the present improved vari-
ation which takes account of the Lagrangian LA
leads to a new result, i.e. Euler’s equation of mo-
tion is satisfied by the new set of (36), (37) and
(38).

3.3 Examples

In order to show how the above representa-
tion of velocity is applied, we consider two sim-
ple examples of flow of an incompressible fluid of
constant density ρ0 and constant entropy s0 by
showing representation in terms of Ω and A in a
cylindrical frame of reference (x, r, ϕ):

v = ∇Φ+
1

ρ0
w,

Φ = ϕ+ s0ψ, w = (wx, wr, wϕ) ,

w = Ω×B, B = (∇×A),

Ω = (Ωx, Ωr, Ωϕ), A = (Ax, Ar, Aϕ)

(a) Rectilinear vortex
First example is a rectilinear vortex L of strength

γ which coincides with the x-axis, i.e. the axis of
cylindrical symmetry. With respect to this coor-
dinate frame, we can define

Ω = (γ, 0, 0), A = (0, 0, Aϕ), (58)

Aϕ = −ρ0x
2πr

,

(Φ = 0). This gives

B = (Bx, Br, Bϕ) = ∇×A = (0,
ρ0
2πr

, 0).

Then we have the velocity field of vortex L:

w = Ω×B = (0, −γBϕ, γBr) = (0, 0,
γρ0
2πr

),

(59)
a well-known line-vortex of circulating velocity vϕ =
wϕ/ρ0 = γ/(2πr) of strength γ.

(b) Hill’s spherical vortex
Next example is the Hill’s spherical vortex of

radius a moving with a constant velocity U in the
x-direction. The frame of reference is taken to
be fixed to the moving vortex with its symmetry
axis coinciding with the x-axis of the cylindrical
frame (x, r, ϕ). The flow field is steady in this
frame. The flow outside the sphere of radius a is
assumed to be irrotational with uniform velocity
−U at infinity. Its (Stokes’s) stream function Ψo

is given by

Ψo(x, r) = − 1
2 Ur

2
(
1− a3

R3

)
, (60)

R2 = x2 + r2.

6
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Then the velocity components v = (vx, vr, 0) are
given by

vx =
1

r

∂Ψo

∂r
= −U + U

(
1− 3

2

r2

R2

) a3

R3
, (61)

vr = −1

r

∂Ψo

∂x
=

3

2
Ua3

xr

R5
. (62)

Obviously, the velocity field (vx, vr, 0) satisfies the
continuity equation, ∇ · v = 0.

The Hill’s vortex is characterized by the vortic-
ity proportional to r within the spherical surface
of radius a (accounting for stretching of circular
vortex lines by convection). The vorticity has the
ϕ-component ωϕ only. Denoting it as ωϕ = cr (c
a constant), the stream function is found to be

Ψi(x, r) =
1

10
c r2 (a2 −R2),

=
3

4
U r2

(
1− R2

a2

)
. (63)

where c is determined as c = (15/2)(U/a2), so
that the tangential velocity matches with that of
the outer flow given by (61) and (62). The velocity
components (vx, vr, 0) within the sphere are given
by

v(i)x =
1

r

∂Ψi

∂r
=

3

2
U
a2 − x2 − 2r2

a2
, (64)

v(i)r = −1

r

∂Ψi

∂x
=

3

2
U
xr

a2
. (65)

On the surface of sphere R =
√
x2 + r2 = a, it

is seen that both of Ψi and Ψo give the same
expressions of vx = −(3/2)U(r2/a2) and vr =
(3/2)U(xr/a2).

According to the present formulation, we de-
fine the fields Ω and A within the sphere R < a
as

Ω = (0, 0, k r), A = (ϕFx, ϕFr, 0), (66)

for
√
x2 + r2 < a, in the cylindrical frame (x, r, ϕ),

where Fx and Fr are functions of x and r, and k
a constant. This gives

B = ∇×A = (−r−1Fr, r
−1Fx, ϕ bϕ),

where bϕ = ∂xFr−∂rFx. Then we have the veloc-
ity w within the vortex (R < a and Ωϕ = kr):

w = Ω×B = (−ΩϕBr, ΩϕBx, 0)

= k (−Fx, −Fr, 0). (67)

Let us introduce a stream function ΨA to repre-
sent the field (−Fx, −Fr, 0) by

−Fx =
1

r

∂ΨA

∂r
, −Fr = −1

r

∂ΨA

∂x
. (68)

Corresponding vorticity is given by

∂x(−Fr)−∂r(−Fx) = −1

r
∂2xΨA−∂r

(1
r
∂rΨA

)
= r.

This is solved by

ΨA =
1

10
r2 (a2 − x2 − r2).

Using this, (68) gives

Fx = −1

5
(a2 − x2 − 2r2), Fr = −1

5
rx. (69)

If k is replaced by (15/2)(ρ0U/a
2), the equation

(67) reduces to the velocity field of (64) and (65):

wx = −kFx = ρ0 v
(i)
x , wr = −kFr = ρ0 v

(i)
r .

Thus, the fields Ω and A have been determined
by the functions of (69) with k = (15/2)(ρ0U/a

2).
Out of the sphere is the irrotational flow de-

scribed by Ψo of (60). Alternative expression of
the outer velocity can be given by the following
velocity potential Φo:

Φo = −Ux− 1
2 Ua

3 x

R3
,

with vx = ∂xΦo and vr = ∂rΦo. It is easily seen
that these reduce to the same expressions as (61)
and (62). The inner velocity field can be repre-
sented without using any velocity potential.

It remains to show that the fields Ω and A
satisfy (42) and (41) respectively:

∇× (Ω× v) = 0 , (70)

L∗
t [A] = vk∂kA+Ak∇vk = 0 . (71)

which are required by the variational principle,
where the time derivative terms are omitted in
the present problem.

By using ∇ · v = 0 and ∇ ·Ω = 0 (from (43)),
the first equation (70) reduces to (v · ∇)Ω− (Ω ·
∇)v = 0. Only non vanishing component is its
ϕ-component, which is given by

[(v · ∇)Ω]ϕ − [(Ω · ∇)v]ϕ = vr∂rΩϕ −
Ωϕvr
r

= 0,
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since Ωϕ = kr. Thus, the first (70) is satisfied.
In regard to the second (71), it is useful to note

that we have A = −(ϕ/k)w from (66) and (67).
On the other hand, the steady form of the equa-
tion (56) can be written as vk∂kw = −wk∇vk,
since ∂lv

l = 0 for the present Hill’s vortex. This is
equivalent to the second (71) by using the relation
A = −(ϕ/k)w and noting that vk∂k does not in-
clude ∂ϕ since vϕ = 0 and that the ϕ-components
of both equations vanish identically. Thus, the
fields Ω and A satisfy the conditions required.

The case of the rectilinear vortex can be ver-
ified similarly by using x-independence of the ve-
loctiy vϕ and ϕ-independence of A, Ω and vϕ.

4 Helicity and the Lagrangian LA

Now we can show that there is a close relation
between the Lagrangian LA of (27) and the helic-
ity defined by (6) in which helicity density is given
by ⟨v,ω⟩.

In an isentropic fluid of s = s0 (constant) and
constant density ρ0, we have

v = ∇Φ+w/ρ0, ω = ∇×w/ρ0,

from (45) and (48), where Φ = ϕ+s0ψ. Thus, the
helicity density is given by

⟨v, ω⟩ = ⟨∇Φ+
1

ρ0
w, ω⟩

= ∇ · (Φω) +
1

ρ 2
0

⟨w, ∇×w⟩,

where we used the relation ⟨∇Φ, ω⟩ = ∇ · (Φω)
for the first term, since ∇·ω = 0. By integration,
this term is transformed to surface integrals over
the surface S bounding the volume V which are
assumed to vanish.5 So that, main helicity density
(multiplied by ρ0) is given by

ρ0⟨v,ω⟩w ≡ ⟨w,ω⟩ = ⟨Ω× (∇×A),ω⟩ (72)

= −⟨ω × (∇×A),Ω⟩ = ⟨ω ×Ω,B⟩. (73)

by using (46), where B = ∇ × A. Thus, the
helicity is given by

H = − 1

ρ0

∫ ⟨
ω × (∇×A), Ω

⟩
d3x

=
1

ρ0

∫ ⟨
ω ×Ω, B

⟩
d3x. (74)

5Usually, decay of the term |Φω| is of higher-order than
O(r−2) as r → ∞, so that the surface integral tends to
vanish at large distances r from an origin in V .

The last expression of H claerly states that the
helicity vanishes if the vector field Ω is chosen
such that it is parallel to the vorticity ω at all
points. Putting it differently, the helicity is non-
vanishing if the vector field Ω is not proportional
to the vorticity ω at every point. It is interesting
to see that the density of Lagrangian LA is given
by

−⟨L∗
t [A], Ω⟩d3x,

and that the helicity density is obtained by re-
placing L∗

t [A] in this expression with the term
ω× (∇×A)/ρ0. Both of the factors are obtained
once the two vector fields v and A are known.
Thus, we have found a close relation between the
Lagrangian and the helicity, i.e. if one is defined,
then the other is obtained by replacement of cor-
responding terms.

5 Comparison of LA with other
forms

To help understanding of the present solution,
it is useful to compare the form of the Lagrangian
LA with other forms. Associated with the present
case,

LA = −
∫
V
(L∗

t [A])iΩ
i d3x,

defined by (26), the principle of least action of §3
yielded the equations (41) and (42) for the poten-
tials Ai and Ωi, which are reproduced here:

∂tAi + (v · ∇)Ai = −Ak∂ivk, (75)

∂tΩ
i + (v · ∇)Ωi = Ωk∂kv

i − Ωi ∂kv
k. (76)

where ∂kΩ
k = 0 and ∂kAk = 0. From (45) and

(46), the velocity is given by

v = ∇ϕ+ s∇ψ +
1

ρ
Ω× (∇×A)

= ∇ϕ+ s∇ψ +
1

ρ
w. (77)

where w = Ω× (∇×A). The vorticity ω is

ω = ∇s×∇ψ +∇×
(1
ρ
w
)
. (78)

On the other hand, the Lagrangian (23) intro-
duced by Lin (1963) is

LL =

∫
Bk ·Dtak d3x .
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where ak (k = 1, 2, 3) are Lagrange parameters
satisfying

Dtak = ∂tak+(v ·∇)ak = 0, k = 1, 2, 3. (79)

The potential fields Bk (k = 1, 2, 3) of the coef-
ficient are so-called the Lagrange multupliers for
which the variation principle leads to the follow-
ings:

DtBk = ∂tBk + (v · ∇)Bk = 0, k = 1, 2, 3.
(80)

Appendix C gives the velocity and vorticity asso-
ciated with the Lin’s Lagrangian LL as

v = ∇ϕ+ s∇ψ +
3∑

k=1

Bk∇ak, (81)

ω = ∇× v

= ∇s×∇ψ +
3∑

k=1

∇Bk ×∇ak. (82)

Obviously, with both cases of (78) and (82), the
vorticity does not vanish even for the case of isen-
tropy of ∇s = 0. Therefore both formulations
can support rotational flows in isentropic flows.
The number of potentials Bk can be reduced from
three to two [10, 11]. This is possible because of
the mass conservation condition of (25) connect-
ing the density ρ with the derivatives ∂Xi/∂aj
(Appendix C).

However, there is an essential difference be-
tween the pair of equations [(75), (76)] and [(79),
(80)]. In both pairs, the left hand sides are com-
mon, i.e. given by the convective derivative ∂t+(v·
∇) applied to the potentials. In regard to the right
hand side, those of the latter pair vanish, express-
ing the potentials convected by the fluid flow. In
the former pair however, there are non-vanishing
terms, which represent the effects of stretching or
volume change. Namely, the potentials ak and Bk
in the LL are simply convected by the flow with-
out any influence of stretching or volume change.
These effects are essential in the dynamics of the
vorticity. Therefore it is expected that the former
case of LA describes the vorticity dynamics more
faithfully.

6 Conclusion

An improvement of variational formulation is
proposed for rotational flows of an ideal fluid by

using an additional Lagrangian LA. The system
of new expressions derived from the principle of
least action is verified to satisfy the Euler’s equa-
tion of motion. Therefore we have obtained a new
expression of solution to the Euler’s equation of
motion. The rotational part of velocity field is ex-
pressed by using two vector potentials A and Ω,
governed by such equations that take account of
the effects of stretching and volume change. As
a result, the scalar product ⟨A, Ω ⟩ becomes the
density of a scalar field that satisfies a conserva-
tion equation. Two simple examples are given to
show how the velocity is represented by using A
and Ω for vortex flows of an incompressible fluid
with a constant specific entropy. In this solution,
the helicity density is given an explicit form.

Appendix

A Euler-Lagrange equation

— Variation with respect to particle coordinate —

We consider the following infinitesimal trans-
formation of the position of particle a, x → x′,
and associated volume change d3x:

x(a) → x′(a) = x(a) + ξ(a, t), (83)

d3x → d3x′ = (1 + ∂kξ
k)d3x,

Then the variations of particle position and vol-
ume are δx = ξ and δ(d3x) = ∂kξ

k d3x. It is
shown in [1, 2] that other variations of density ρ,
velocity v and entropy s are given by

δρ = −ρ ∂kξk, δv = Dtξ, δs = 0.

The action J is defined by (4) in the main text,
where the Lagrangian density Λ∗ is given by (3),
which is written simply by Λ here. Variation of
J resulting from the above variations is expressed
as

δJ =

∫
d4x

[∂Λ
∂v

δv +
∂Λ

∂ρ
δρ+

∂Λ

∂s
δs+ Λ ∂kξ

k
]
.

Substituting the expressions for δρ, δv, δs and
δ(d3x), and requiring δJ vanishes for arbitrary
variation ξk, we obtain the Euler-Lagrange equa-
tion:

∂

∂t

( ∂Λ
∂vk

)
+

∂

∂xl
(
vl
∂Λ

∂vk
)
+

∂

∂xk
(
Λ− ρ

∂Λ

∂ρ

)
= 0,
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(see [1, 2] for details). Substituting the expression
of (3) into Λ, we obtain the following momentum
conservation:

∂t
(
ρv

)
+∇ · ρvv +∇ p = 0.

This reduces to the Euler’s equation of motion
(21) by using the continuity equation (13).

B Lagrangian LA

The Lagrangian LA of (26) was defined by
[1, 2] originally in the form of total time deriva-
tive as follows:

LA = − d

dτ

∫
M
⟨Aa, Ωa ⟩d3a

= −
∫
M
⟨∂τAa, Ωa ⟩d3a, (84)

where a = (a1, a2, a3) are the Lagrangian coordi-
nates with d3a a volume element, and τ (= t) is
the time used in combination with a, and Aa is a
vector potential. The vector Ωa is one defined in
the Lagrangian a-space which satisfies ∂τΩa = 0,
the same equation as the vorticity transformed to
the a-space. Hence, the time derivative ∂τ is ap-
plied to the vector Aa only on the right side of
(84), since ∂τΩa = 0 and ∂τd

3a = 0.
The action JA associated with LA is defined

by the same integral as (4), which is written here:

JA =

∫ (∫
LA dτ

)
d3a.

Substituting the above LA of (84), we can inte-
grate it with respect to τ . Hence, even this new
term is added to the total Lagrangian L∗ of (2),
it is eliminated when deriving the Euler-Lagrange
equation by the variational principle, described in
Appendix A.

Similarly, the last two terms of the Lagrangian
density Λ∗ of (3) were also derived from the La-
grangians originally defined in the form of total
time derivative by

Lϕ = − d

dτ

∫
ϕ d3a, Lψ = − d

dτ

∫
sψ d3a.

Therefore, the action J defined by time integral is
uninfluenced by these three additional terms be-
cause they are integrated with respect to τ .

However, these Lagrangians become non-trivial
when transformed to the physical-space coordi-
nates x = (x1, x2, x3) and when Eulerian vari-
ation is taken. This is because the Jacobian of
the transformation (a1, a2, a3) ⇔ (x1, x2, x3), i.e.
∂(xk)/∂(al), is connected directly to the density ρ.
Using the notations x = (x, y, z) and a = (a, b, c)
instead of (x1, x2, x3) and (a1, a2, a3), the integra-
tion element d3a = dadbdc is replaced by

d3a = ρ̂ d3x, ρ̂ ≡ ρ(t,x)

ρ(0,x)
=
∂(a, b, c)

∂(x, y, z)
.

by (24) and by the definition of the Lagrangian
coordinates a = (a, b, c). The vorticity ω in the
Eulerian x-space is transformed to ωa in the La-
grangian a-space, which can be shown to be in-
variant with respect to τ , i.e. ∂τωa = 0.

Next, we consider transformation of the inte-
grals in the a-space (defined above) to those in the
x-space. For that purpose, it is useful to define a
one-form V 1 by

V 1 = Vada+ Vbdb+ Vcdc

= u dx+ v dy + w dz.

where V a = (Va, Vb, Vc), and da = (da, db,dc).
[In the above expressions, Va = uxa+vya+wza, where

xa = ∂X/∂a, u = Xτ , etc. ] Its differential dV 1

gives a two-form Ω2 = dV 1:

Ω2 = Ωadb ∧ dc+Ωbdc ∧ da+Ωcda ∧ db (85)

= ωxdy ∧ dz + ωydz ∧ dx+ ωzdx ∧ dy, (86)

where ∇a×V a = (Ωa,Ωb,Ωc) = Ωa, and ∇×v =
(ωx, ωy, ωz) = ω is the vorticity.6

Furthermore, we introduce a vector potential
Aa = (Aa, Ab, Ac) in the a-space, and define its
one-form A1 by

A1 = Aa da+Ab db+Ac dc (87)

= Ax dx+Ay dy +Az dz. (88)

The exterior product of A1 of (87) and Ω2 of (85)
yields a three-form d3a = da ∧ db ∧ dc multiplied
by a scalar product ⟨Aa, Ωa⟩:

A1 ∧ Ω2 = ⟨Aa, Ωa⟩d3a , (89)
6Exterior product (represented by the symbol ∧) of two

one-forms da and db define a two-form da ∧ db, and other
pairs of one-forms define corresponding two-forms. Three
independent two forms make a vector-like composition such
as defined by (dx2 ∧dx3, dx3 ∧dx1, dx1 ∧dx2), and (da2 ∧
da3, da3 ∧ da1, da1 ∧ da2).
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where ⟨Aa, Ωa⟩ = AaΩa+AbΩb+AcΩc is a scalar
product of Aa and Ωa.

In the x = (x, y, z) space, the same exterior
product of (88) and (86) gives the following form
which is equivalent to (89):

A1 ∧ Ω2 = ⟨A, ω⟩d3x , d3x = dx ∧ dy ∧ dz.
(90)

It is obvious that the scalar product ⟨A, ω ⟩ is
invariant under local rotational transformations in
the x space.

From the equality of (89) and (90), we have
⟨Aa,Ωa⟩d3a = ⟨A,ω⟩d3x. Taking derivative with
respect to τ , we have

∂

∂τ

[
⟨Aa, Ωa ⟩d3a

]
= ⟨∂τAa, Ωa ⟩d3a,

since ∂τΩa = 0 and ∂τd
3a = 0. In the x-space,

after integration with − sign added, both sides are
represented as

− d

dt

∫ [
⟨A,ω⟩d3x

]
= −

∫
⟨L∗

t [A], Ω⟩d3x .

Thus, the expression (26) in the main text is de-
duced. See [2, Chap.7] for mathematical detail of
the above derivation.

C Generalized form of Clebsch
solution

Extending the Clebsch solution of §2.2, one
can define a generalized form of Clebsch solution
by

v = ∇ϕ+ s∇ψ +

3∑
k=1

Bk∇ak, (91)

1
2 v

2 + h+ ∂tϕ+ s∂tψ +

3∑
k=1

Bk ∂tak = 0, (92)

Dts = 0, Dtψ = 0, (93)

DtBk = 0, Dtak = 0, (k = 1, 2, 3). (94)

The third term of the velocity (91) and the last
equations (94) are new terms. With the velocity
(91), we have ω, ω × v and ∂tv given by

ω = ∇× v = ∇s×∇ψ +∇Bk ×∇ak.
ω × v = (v · ∇s)∇ψ − (v · ∇ψ)∇s

+(v · ∇Bk)∇ak − (v · ∇ak)∇Bk,
∂tv = ∇∂tϕ+ ∂ts∇ψ + s∇∂tψ

+∂tBk∇ak +Bk∇∂tak.

where the symbol
∑3

k=1 is omitted for terms in-
cluding both ak and Bk. Adding the last two and
using (93) and (94), we obtain

∂tv + ω × v = ∇(∂tϕ+ s ∂tψ +Bk ∂tak)

+(Dts)∇ψ + (DtBk)∇ak.

Last two terms vanish due to (93) and (94), and
the first can be replaced by −∇( 12 v

2+h) by (92).
Thus, this equation reduces to the following Eu-
ler’s equation:

∂tv + ω × v = −∇
(
1
2 v

2 + h
)
.

Namely, the set of equations (91)∼(94) is a solu-
tion of the Euler equation.

Recently, a new Eulerian variational problem
was investigated by [11], with fixing both ends
of a path line in the variational calculus. This
was based on the idea that the Eulerian variation
should coincide with that of the Lagrangian de-
scription. What they obtained was the velocity v
equivalent to the following:

v = ∇ϕ+ s∇ψ +

2∑
k=1

Bk∇ak,

1
2 v

2 + h+ ∂tϕ+ s ∂tψ +

2∑
k=1

Bk ∂tak = 0,

Dts = 0, Dtψ = 0,

DtBk = 0, Dtak = 0, (k = 1, 2).

Thus, the number of potentials Bk can be reduced
from three to two. This was made possible be-
cause the density ρ is connected with the deriva-
tives ∂xi/∂aj by the mass conservation condition
of (25) [10].
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